
Example-Driven Query Intent Discovery:
Abductive Reasoning using Semantic Similarity

Anna Fariha
College of Information and Computer Sciences

University of Massachusetts Amherst

afariha@cs.umass.edu

Alexandra Meliou
College of Information and Computer Sciences

University of Massachusetts Amherst

ameli@cs.umass.edu

ABSTRACT
Traditional relational data interfaces require precise structured

queries over potentially complex schemas. These rigid data re-
trieval mechanisms pose hurdles for non-expert users, who typi-
cally lack language expertise and are unfamiliar with the details of
the schema. Query by Example (QBE) methods offer an alternative
mechanism: users provide examples of their intended query output
and the QBE system needs to infer the intended query. However,
these approaches focus on the structural similarity of the examples
and ignore the richer context present in the data. As a result, they
typically produce queries that are too general, and fail to capture the
user’s intent effectively. In this paper, we present SQUID, a sys-
tem that performs semantic similarity-aware query intent discov-
ery. Our work makes the following contributions: (1) We design
an end-to-end system that automatically formulates select-project-
join queries in an open-world setting, with optional group-by ag-
gregation and intersection operators; a much larger class than prior
QBE techniques. (2) We express the problem of query intent dis-
covery using a probabilistic abduction model, that infers a query as
the most likely explanation of the provided examples. (3) We in-
troduce the notion of an abduction-ready database, which precom-
putes semantic properties and related statistics, allowing SQUID to
achieve real-time performance. (4) We present an extensive empir-
ical evaluation on three real-world datasets, including user-intent
case studies, demonstrating that SQUID is efficient and effective,
and outperforms machine learning methods, as well as the state-of-
the-art in the related query reverse engineering problem.

PVLDB Reference Format:
Anna Fariha, Alexandra Meliou. Example-Driven Query Intent Discovery:
Abductive Reasoning using Semantic Similarity. PVLDB, 12(11): 1262-
1275, 2019.
DOI: https://doi.org/10.14778/3342263.3342266

1. INTRODUCTION
Database technology has expanded drastically, and its audience

has broadened, bringing on a new set of usability requirements. A
significant group of current database users are non-experts, such as
data enthusiasts and occasional users. These non-expert users want

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342266

academics
id name

100 Thomas Cormen
101 Dan Suciu
102 Jiawei Han
103 Sam Madden
104 Joseph Hellerstein

research
aid interest
100 algorithms
101 data management
102 data mining
103 data management
103 distributed systems
104 data management
104 distributed systems

Figure 1: Excerpt of the CS Academics data. Dan Suciu and Sam
Madden (in bold), both have research interests in data management.

to explore data, but lack the expertise needed to do so. Traditional
database technology was not designed with this group of users in
mind, and hence poses hurdles to these non-expert users. Tradi-
tional query interfaces allow data retrieval through well-structured
queries. To write such queries, one needs expertise in the query
language (typically SQL) and knowledge of the, potentially com-
plex, database schema. Unfortunately, occasional users typically
lack both. Query by Example (QBE) offers an alternative retrieval
mechanism, where users specify their intent by providing example
tuples for their query output [43].

Unfortunately, traditional QBE systems [49, 46, 14] for rela-
tional databases make a strong and oversimplifying assumption in
modeling user intent: they implicitly treat the structural similarity
and data content of the example tuples as the only factors specify-
ing query intent. As a result, they consider all queries that contain
the provided example tuples in their result set as equally likely to
represent the desired intent.1 This ignores the richer context in the
data that can help identify the intended query more effectively.

Example 1.1. In Figure 1, the relations academics and research
store information about CS researchers and their research inter-
ests. Given the user-provided set of examples {Dan Suciu, Sam
Madden}, a human can posit that the user is likely looking for data
management researchers. However, a QBE system, that looks for
queries based only on the structural similarity of the examples, pro-
duces Q1 to capture the query intent, which is too general:

Q1: SELECT name FROM academics
In fact, the QBE system will generate the same generic query Q1
for any set of names from the relation academics. Even though
the intended semantic context is present in the data (by associat-
ing academics with research interest information using the relation
research), existing QBE systems fail to capture it. The more spe-
cific query that better represents the semantic similarity among the
example tuples is Q2:

Q2: SELECT name FROM academics, research
WHERE research.aid = academics.id AND

research.interest = ‘data management’
1More nuanced QBE systems exist, but typically place additional requirements or sig-
nificant restrictions over the supported queries (Figure 3).

Figure 2: Partial IMDb schema with entity relations movie and
person, and semantic property relation genre. Relations castinfo
and movietogenre associate entities and semantic properties.

Example 1.1 shows how reasoning about the semantic similarity
of the example tuples can guide the discovery of the correct query
structure (join of the academics and research tables), as well as the
discovery of the likely intent (research interest in data management).

We can often capture semantic similarity through direct attributes
of the example tuples. These are attributes associated with a tuple
within the same relation, or through simple key-foreign key joins
(such as research interest in Example 1.1). Direct attributes capture
intent that is explicit, precisely specified by the particular attribute
values. However, sometimes query intent is more vague, and not
expressible by explicit semantic similarity alone. In such cases,
the semantic similarity of the example tuples is implicit, captured
through deeper associations with other entities in the data (e.g., type
and quantity of movies an actor appears in).

Example 1.2. The IMDb dataset contains a wealth of information
related to the movies and entertainment industry. We query the
IMDb dataset (Figure 2) with a QBE system, using two different
sets of examples:

ET1={Arnold Schwarzenegger ET2={Eddie Murphy
Sylvester Stallone Jim Carrey
Dwayne Johnson} Robin Williams}

ET1 contains the names of three actors from a public list of “physi-
cally strong” actors2; ET2 contains the names of three actors from a
public list of “funny” actors3. ET1 and ET2 represent different query
intents (strong actors and funny actors, respectively), but a standard
QBE system produces the same generic query for both:

Q3: SELECT person.name FROM person
Explicit semantic similarity cannot capture these different intents,
as there is no attribute that explicitly labels an actor as “strong”
or “funny”. Nevertheless, the database encodes these associations
implicitly, in the number and type of movies an actor appears in.4

Standard QBE systems typically produce queries that are too gen-
eral, and fail to capture nuanced query intents, such as the ones in
Examples 1.1 and 1.2. Some prior approaches attempt to refine the
queries based on additional, external information, such as external
ontologies [36], provenance information of the example tuples [14],
and user feedback on multiple (typically a large number) system-
generated examples [11, 35, 16]. Other work relies on a closed-
world assumption5 to produce more expressive queries [35, 54, 62]
and thus requires complete examples of input databases and output
results. Providing such external information is typically complex
and tedious for a non-expert.6

In contrast with prior approaches, we propose a method and
present an end-to-end system for discovering query intent effec-
tively and efficiently, in an open-world setting, without the need for
additional external information, beyond the initial set of example

2https://www.imdb.com/list/ls050159844
3https://www.imdb.com/list/ls000025701
4“Strong” actors frequently appear in action movies, and “funny” actors in comedies.
5In the closed-world setting, a tuple not specified as an example output is assumed to
be excluded from the query result.
6Figure 3 provides a summary exposition of prior work, and contrasts with our con-
tributions. We detail this classification and metrics in our technical report [21] and
discuss the related work in Section 8.

query classLegend

QBE: Query by Example
QRE: Query Reverse Engineering additional

DX: Data Exploration requirements
KG: Knowledge Graph

!: with significant restrictions jo
in

pr
oj

ec
tio

n
se

le
ct

io
n

ag
gr

eg
at

io
n

se
m

i-
jo

in
im

pl
ic

it
pr

op
er

ty
sc

al
ab

le
op

en
-w

or
ld

Q
B

E re
la

tio
na

l SQUID X X X X X X X X
Bonifati et al. [11] X X ! X X X user feedback
QPlain [14] X X X X X X provenance input
Shen et al. [49] X X X X
FASTTOPK [46] X X X X

K
G

Arenas et al. [4] X X ! X X X
SPARQLByE [15] X X ! X X X negative examples
GQBE [28] X X ! X X X
QBEES [41] X X ! X X X

Q
R

E
re

la
tio

na
l

PALEO-J [45] X X X X X top-k queries only
SQLSynthesizer [62] X X X X X schema knowledge
SCYTHE [54] X X X X X schema knowledge
Zhang et al. [61] X X X
REGAL [51] X X X X
REGAL+ [52] X X X X
FASTQRE [31] X X X X
QFE [35] X X X user feedback
TALOS [53] X X X X X X

D
X

re
l. AIDE [16] X X X user feedback

REQUEST [23] X X X user feedback

Figure 3: SQUID captures complex intents and more expressive
queries than prior work in the open-world setting.

tuples. SQUID, our semantic similarity-aware query intent discov-
ery framework [22], relies on two key insights: (1) It exploits the
information and associations already present in the data to derive
the explicit and implicit similarities among the provided examples.
(2) It identifies the significant semantic similarities among them us-
ing abductive reasoning, a logical inference mechanism that aims
to derive a query as the simplest and most likely explanation for the
observed results (example tuples). We explain how SQUID uses
these insights to handle the challenging scenario of Example 1.2.

Example 1.3. We query the IMDb dataset with SQUID, using the
example tuples in ET2 (Example 1.2). SQUID discovers the fol-
lowing semantic similarities among the examples: (1) all are Male,
(2) all are American, and (3) all appeared in more than 40 Comedy
movies. Out of these properties, Male and American are very com-
mon in the IMDb database. In contrast, a very small fraction of
persons in the dataset are associated with such a high number of
Comedy movies; this means that it is unlikely for this similarity to be
coincidental, as opposed to the other two. Based on abductive rea-
soning, SQUID selects the third semantic similarity as the best ex-
planation of the observed example tuples, and produces the query:

Q4: SELECT person.name
FROM person, castinfo, movietogenre, genre
WHERE person.id = castinfo.person id

AND castinfo.movie id = movietogenre.movie id
AND movietogenre.genre id = genre.id
AND genre.name = ‘Comedy’

GROUP BY person.id
HAVING count(*) >= 40

In this paper, we make the following contributions:
• We design an end-to-end system, SQUID, that automatically for-

mulates select-project-join queries with optional group-by ag-
gregation and intersection operators (SPJAI) based on few user-
provided example tuples. SQUID does not require the users to
have any knowledge of the database schema or the query lan-
guage. In contrast with existing approaches, SQUID does not
need any additional user-provided information, and achieves very
high precision with very few examples in most cases.

https://www.imdb.com/list/ls050159844
https://www.imdb.com/list/ls000025701

• SQUID infers the semantic similarity of the example tuples, and
models query intent using a collection of basic and derived se-
mantic property filters (Section 3). Prior work has explored the
use of semantic similarity in knowledge graph retrieval tasks [63,
41, 28]. However, these prior systems do not directly apply to
the relational domain, and do not model implicit semantic simi-
larities, derived from aggregating properties of affiliated entities
(e.g., number of comedy movies an actor appeared in).
• We express the problem of query intent discovery using a proba-

bilistic abduction model (Section 4). This model allows SQUID
to identify the semantic property filters that represent the most
probable intent given the examples.
• SQUID achieves real-time performance through an offline strat-

egy that pre-computes semantic properties and related statistics
to construct an abduction-ready database (Section 5). During the
online phase, SQUID consults the abduction-ready database to
derive relevant semantic property filters, based on the provided
examples, and applies abduction to select the optimal set of fil-
ters towards query intent discovery (Section 6). We prove the
correctness of the abduction algorithm in Theorem 1.
• Our empirical evaluation includes three real-world datasets, 41

queries covering a broad range of complex intents and struc-
tures, and three case studies (Section 7). We further compare
with TALOS [53], a state-of-the-art system that captures very
expressive queries, but in a closed-world setting. We show that
SQUID is more accurate at capturing intent and produces bet-
ter queries, often reducing the number of predicates by orders of
magnitude. We also empirically show that SQUID outperforms
a semi-supervised machine learning system [19], which learns
classification models from positive examples and unlabeled data.

2. SQUID OVERVIEW
In this section, we first discuss the challenges in example-driven

query intent discovery and highlight the shortcomings of existing
approaches. We then formalize the problem of query intent dis-
covery using a probabilistic model and describe how SQUID in-
fers the most likely query intent using abductive reasoning. Fi-
nally, we present the system architecture for SQUID, and provide
an overview of our approach.

2.1 The Query Intent Discovery Problem
SQUID aims to address three major challenges that hinder exist-

ing QBE systems:
Large search space. Identifying the intended query given a set

of example tuples can involve a huge search space. Aside from enu-
merating the candidate queries, validating them is expensive, as it
requires executing the queries over potentially very large data. Ex-
isting approaches limit their search space in three ways: (1) They
often focus on project-join (PJ) queries only. Unfortunately, ignor-
ing selections severely limits the applicability and practical impact
of these solutions. (2) They assume that the user provides a large
number of examples or interactions, which is often unreasonable in
practice. (3) They make a closed-world assumption, thus needing
complete sets of input data and output results. In contrast, SQUID
focuses on a much larger and more expressive class of queries,
select-project-join queries with optional group-by aggregation and
intersection operators (SPJAI)7, and is effective in the open-world
setting with very few examples.

Distinguishing candidate queries. In most cases, a set of ex-
ample tuples does not uniquely identify the target query, i.e., there
7The SPJAI queries derived by SQUID limit joins to key-foreign key joins, and con-
junctive selection predicates of the form attribute OP value, where OP ∈
{=,≥,≤} and value is a constant.

semantic property
statistics

derived relations

 offline
module

DB

meta-
data

inverted
indexing

derived relation
materialization

filter selectivity
precomputation

example tuples query intent
discovery

SQL
query

result tuples
entity

disambiguation

semantic context
discovery

query
abduction

αDB
abduction-ready

database

Figure 4: SQUID includes an offline module, which constructs an
abduction-ready database (αDB) and precomputes statistics of se-
mantic properties. During normal operation, SQUID’s query intent
discovery module interacts with the αDB to identify the semantic
context of the examples and abduces the most likely query intent.

are multiple valid queries that contain the example tuples in their
results. Most existing QBE systems do not distinguish among the
valid queries [49] or only rank them according to the degree of in-
put containment, when the example tuples are not fully contained
by the query output [46]. In contrast, SQUID exploits the semantic
context of the example tuples and ranks the valid queries based on
a probabilistic abduction model of query intent.

Complex intent. A user’s information need is often more com-
plex than what is explicitly encoded in the database schema (e.g.,
Example 1.2). Existing QBE solutions focus on the query structure
and are thus ill-equipped to capture nuanced intent. While SQUID
still produces a structured query in the end, its objectives focus
on capturing the semantic similarity of the examples, both explicit
and implicit. SQUID thus draws a contrast between the traditional
query-by-example problem, where the query is assumed to be the
hidden mechanism behind the provided examples, and the query
intent discovery problem that we focus on in this work.

We proceed to formalize the problem of query intent discovery.
We useD to denote a database, andQ(D) to denote the set of tuples
in the result of query Q operating on D.

Definition 2.1 (Query Intent Discovery). For a database D and
a user-provided example tuple set E, the query intent discovery
problem is to find an SPJAI query Q such that:
• E ⊆ Q(D)
• Q = argmaxq Pr(q|E)

More informally, we aim to discover an SPJAI query Q that con-
tains E within its result set and maximizes the query posterior, i.e.,
the conditional probability Pr(Q|E).

2.2 Abductive Reasoning
SQUID solves the query intent discovery problem (Definition 2.1)

using abduction. Abduction or abductive reasoning [40, 30, 10, 5]
refers to the method of inference that finds the best explanation
(query intent) of an often incomplete observation (example tuples).
Unlike deduction, in abduction, the premises do not guarantee the
conclusion. So, a deductive approach would produce all possible
queries that contain the example tuples in their results, and it would
guarantee that the intended query is one of them. However, the set
of valid queries is typically extremely large, growing exponentially
with the number of properties and the size of the data domain. In
our work, we model query intent discovery as an abduction prob-
lem and apply abductive inference to discover the most likely query
intent. More formally, given two possible candidate queries, Q and
Q′, we infer Q as the intended query if Pr(Q|E) > Pr(Q′|E).

Example 2.1. Consider again the scenario of Example 1.1. SQUID
identifies that the two example tuples share the semantic context
interest = data management. Q1 and Q2 both contain the example
tuples in their result set. However, the probability that two tuples

movietogenre

(aggregated
association between
person and genre)

castinfoperson

Jim Carrey

Ewan McGregor

Lauren Holly

movie

Bruce Almighty

Dumb and Dumber

I Love You Phillip Morris

genre

Comedy

Fantasy

Drama

persontogenre

person genre count

Jim Carrey Comedy 3
Jim Carrey Fantasy 1
Jim Carrey Drama 2
Ewan McGregor Comedy 2
Ewan McGregor Drama 1
Lauren Holly Comedy 1

person

Jim Carrey

Ewan McGregor

Lauren Holly

genre

Comedy

Fantasy

Drama

Figure 5: A genre value (e.g., genre=Comedy) is a basic semantic
property of a movie (through the movietogenre relation). A person
is associated with movie entities (through the castinfo relation);
aggregates of basic semantic properties of movies are derived se-
mantic properties of person, e.g., the number of comedy movies
a person appeared in. The αDB stores the derived property in the
new relation persontogenre. (For ease of exposition, we depict
attributes genre and person instead of genre.id and person.id.)

drawn randomly from the output of Q1 would display the identi-
fied semantic context is low ((3

7
)2 ≈ 0.18 in the data excerpt).

In contrast, the probability that two tuples drawn randomly from
the output of Q2 would display the identified semantic context is
high (1.0). Assuming that Q1 and Q2 have equal priors (Pr(Q1) =
Pr(Q2)), then from Bayes’ rule Pr(Q2|E) > Pr(Q1|E).

2.3 Solution Sketch
At the core of SQUID is an abduction-ready database, αDB

(Figure 4). The αDB (1) increases SQUID’s efficiency by stor-
ing precomputed associations and statistics, and (2) simplifies the
query model by reducing the extended family of SPJAI queries on
the original database to equivalent SPJ queries on the αDB.

Example 2.2. The IMDb database has, among others, relations
person and genre (Figure 2). SQUID’s αDB stores a derived se-
mantic property that associates the two entity types in a new rela-
tion, persontogenre(person.id, genre.id, count), which stores
how many movies of each genre each person appeared in. SQUID
derives this relation through joins with castinfo and movietogenre,
and aggregation (Figure 5). Then, the SPJAI query Q4 (Example 1.3)
is equivalent to the simpler SPJ query Q5 on the αDB:
Q5: SELECT person.name

FROM person, persontogenre, genre
WHERE person.id = persontogenre.person id AND

persontogenre.genre id = genre.id AND
genre.name = ‘Comedy’ AND persontogenre.count >= 40

By incorporating aggregations in precomputed, derived relations,
SQUID can reduce SPJAI queries on the original data to SPJ queries
on the αDB. SQUID starts by inferring a PJ query,Q∗, on the αDB
as a query template; it then augments Q∗ with selection predicates,
driven by the semantic similarity of the examples. Section 3 for-
malizes SQUID’s model of query intent as a combination of the
base query Q∗ and a set of semantic property filters. Then, Sec-
tion 4 analyzes the probabilistic abduction model that SQUID uses
to solve the query intent discovery problem (Definition 2.1).

After the formal models, we describe the system components of
SQUID. Section 5 describes the offline module, which is respon-
sible for making the database abduction-ready, by precomputing
semantic properties and statistics in derived relations. Section 6
describes the query intent discovery module, which abduces the
most likely intent as an SPJ query on the αDB.

3. MODELING QUERY INTENT
SQUID’s core task is to infer the proper SPJ query on the αDB.

We model an SPJ query as a pair of a base query and a set of seman-
tic property filters: Qϕ=(Q∗, ϕ). The base query Q∗ is a project-
join query that captures the structural aspect of the example tuples.
SQUID can handle examples with multiple attributes, but, for ease
of exposition, we focus on example tuples that contain a single at-
tribute of a single entity (name of person). In contrast to existing
approaches that derive PJ queries from example tuples, the base
query in SQUID does not need to be minimal with respect to the
number of joins: While a base query on a single relation with pro-
jection on the appropriate attribute (e.g., Q1 in Example 1.1) would
capture the structure of the examples, the semantic context may
rely on other relations (e.g., research, as in Q2 of Example 1.1).
Thus, SQUID considers any number of joins among αDB relations
for the base query, but limits these to key-foreign key joins.

We discuss a simple method for deriving the base query in Sec-
tion 6.2. SQUID’s core challenge is to infer ϕ, which denotes a set
of semantic property filters that are added as conjunctive selection
predicates to Q∗. The base query and semantic property filters for
Q2 of Example 1.1 are:
Q∗ = SELECT name FROM academics, research

WHERE research.aid = academics.id
ϕ = { research.interest = ‘data management’}

3.1 Semantic Properties and Filters
Semantic properties encode characteristics of an entity, and are

of two types: (1) A basic semantic property is affiliated with an
entity directly. In the IMDb schema of Figure 2, gender=Male is a
basic semantic property of a person. (2) A derived semantic prop-
erty of an entity is an aggregate over a basic semantic property of an
associated entity. In Example 2.2, the number of movies of a partic-
ular genre that a person appeared in is a derived semantic property
for person. We represent a semantic property p of an entity from
a relation R as a triple p = 〈A, V, θ〉. In this notation, V denotes
a value8 or a value range for attribute A associated with entities in
R. The association strength parameter θ quantifies how strongly
an entity is associated with the property. It corresponds to a thresh-
old on derived semantic properties (e.g., the number of comedies
an actor appeared in); it is not defined for basic properties (θ = ⊥).

A semantic property filter φp is a structured language represen-
tation of the semantic property p. In the data of Figure 6, the fil-
ters φ〈gender,Male,⊥〉 and φ〈age,[50,90],⊥〉 represent two basic seman-
tic properties on gender and age, respectively. Expressed in rela-
tional algebra, filters on basic semantic properties map to standard
selection predicates, e.g., σgender=Male(person) and σ50≤age≤90(per-
son). For derived properties, filters specify conditions on the asso-
ciation across different entities. In Example 2.2, for person en-
tities, the filter φ〈genre,Comedy,30〉 denotes the property of a person
being associated with at least 30 movies with the basic property
genre=Comedy. In relational algebra, filters on derived properties
map to selection predicates over derived relations in the αDB, e.g.,
σgenre=Comedy∧count≥30(persontogenre).

3.2 Filters and Example Tuples
To construct Qϕ, SQUID needs to infer the proper set of seman-

tic property filters given a set of example tuples. Since all example
tuples should be in the result ofQϕ, ϕ cannot contain filters that the
example tuples do not satisfy. Thus, we only consider valid filters
that map to selection predicates that all examples satisfy.
8SQUID can support disjunction for categorical attributes (e.g., gender=Male or
gender=Female), so V could be a set of values. However, for ease of exposition
we keep our examples limited to properties without disjunction.

person
id name gender age
1 Tom Cruise Male 50
2 Clint Eastwood Male 90
3 Tom Hanks Male 60
4 Julia Roberts Female 50
5 Emma Stone Female 29
6 Julianne Moore Female 60

Example tuples
Column 1

Tom Cruise
Clint Eastwood

Figure 6: Sample database with example tuples

Definition 3.1 (Filter validity). Given a database D, an example
tuple set E, and a base query Q∗, a filter φ is valid if and only if
Q{φ}(D) ⊇ E, where Q{φ} = (Q∗, {φ}).

Figure 6 shows a set of example tuples over the relation person.
Given the base query Q∗=SELECT name FROM person, the filters
φ〈gender,Male,⊥〉 and φ〈age,[50,90],⊥〉 on relation person are valid, be-
cause all of the example entities of Figure 6 are Male and fall in the
age range [50, 90].

Lemma 3.1. (Validity of conjunctive filters). The conjunction (φ1∧
φ2∧. . .) of a set of filtersΦ = {φ1, φ2, . . . } is valid, i.e.,QΦ(D) ⊇
E, if and only if ∀φi ∈ Φ φi is valid.

Relaxing a filter (loosening its conditions) preserves validity. For
example, if φ〈age,[50,90],⊥〉 is valid, then φ〈age,[40,120],⊥〉 is also valid.
Out of all valid filters, SQUID focuses on minimal valid filters,
which have the tightest bounds.9

Definition 3.2 (Filter minimality). A basic semantic property filter
φ〈A,V,⊥〉 is minimal if it is valid, and ∀V ′⊂V , φ〈A,V ′,⊥〉 is not
valid. A derived semantic property filter φ〈A,V,θ〉 is minimal if it is
valid, and ∀ε > 0, φ〈A,V,θ+ε〉 is not valid.

In the example of Figure 6, φ〈age,[50,90],⊥〉 is a minimal filter and
φ〈age,[40,90],⊥〉 is not.

4. PROBABILISTIC ABDUCTION MODEL
We now revisit the problem of Query Intent Discovery (Defini-

tion 2.1), and recast it based on our model of query intent (Sec-
tion 3). Specifically, Definition 2.1 aims to discover an SPJAI query
Q; this is reduced to an equivalent SPJ query Qϕ on the αDB (as
in Example 2.2). SQUID’s task is to find the query Qϕ that max-
imizes the posterior probability Pr(Qϕ|E), for a given set E of
example tuples. In this section, we analyze the probabilistic model
to compute this posterior, and break it down to three components.

4.1 Notations and Preliminaries
Semantic context x. Observing a semantic property in a set of
10 examples is more significant than observing the same property
in a set of 2 examples. We denote this distinction with the se-
mantic context x = (p, |E|), which encodes the size of the set
(|E|) where the semantic property p is observed. We denote with
X = {x1, x2, . . . } the set of semantic contexts exhibited by the set
of example tuples E.
Candidate SPJ query Qϕ. Let Φ = {φ1, φ2, . . . } be the set of
minimal valid filters10, from hereon simply referred to as filters,
where φi encodes the semantic context xi. Our goal is to identify
the subset of filters in Φ that best captures the query intent. A set
of filters ϕ ⊆ Φ defines a candidate query Qϕ = (Q∗, ϕ), and
Qϕ(D) ⊇ E (from Lemma 3.1).
Filter event φ̃. A filter φ ∈ Φ may or may not appear in a candi-
date query Qϕ. With slight abuse of notation, we denote the filter’s
9Bounds can be derived in different ways, potentially informed by the result set cardi-
nality. However, we found that the choice of the tightest bounds works well in practice.

10We omit 〈A, V, θ〉 in the filter notation when the context in clear.

Notation Description
p = 〈A, V, θ〉 Semantic property defined by attribute A,

value V , and association strength θ
φp or φ Semantic property filter for p
Φ = {φ1, φ2, . . . } Set of minimal valid filters
Qϕ = (Q∗, ϕ) SPJ query with semantic property filters ϕ ⊆ Φ

applied on base query Q∗

x = (p, |E|) Semantic context of E for p
X = {x1, x2, . . . } Set of semantic contexts

Figure 7: Summary of notations

presence (φ ∈ ϕ) with φ and its absence (φ 6∈ ϕ) with φ̄. We use φ̃
to represent the occurrence event of φ in Qϕ.

Thus: φ̃ =

{
φ if φ ∈ ϕ
φ̄ if φ 6∈ ϕ

4.2 Modeling Query Posterior
We first analyze the probabilistic model for a fixed base queryQ∗

and then generalize the model in Section 4.3. We use Pr∗(a) as a
shorthand forPr(a|Q∗). We model the query posteriorPr∗(Qϕ|E),
using Bayes’ rule:

Pr∗(Q
ϕ|E) =

Pr∗(E|Qϕ)Pr∗(Q
ϕ)

Pr∗(E)

By definition, Pr∗(X|E) = 1; therefore:

Pr∗(Q
ϕ|E) =

Pr∗(E,X|Qϕ)Pr∗(Q
ϕ)

Pr∗(E)

=
Pr∗(E|X , Qϕ)Pr∗(X|Qϕ)Pr∗(Q

ϕ)

Pr∗(E)

Using the fact that Pr∗(X|E) = 1 and applying Bayes’ rule on
the prior Pr∗(E), we get:

Pr∗(Q
ϕ|E) =

Pr∗(E|X , Qϕ)Pr∗(X|Qϕ)Pr∗(Q
ϕ)

Pr∗(E|X)Pr∗(X)

Finally,E is conditionally independent ofQϕ given the semantic
context X , i.e., Pr∗(E|X , Qϕ)=Pr∗(E|X). Thus:

Pr∗(Q
ϕ|E) =

Pr∗(X|Qϕ)Pr∗(Q
ϕ)

Pr∗(X)
(1)

In Equation 1, we have modeled the query posterior in terms of three
components: (1) the semantic context prior Pr∗(X), (2) the query
priorPr∗(Qϕ), and (3) the semantic context posterior, Pr∗(X|Qϕ).
We proceed to analyze each of these components.

4.2.1 Semantic Context Prior
The semantic context prior Pr∗(X) denotes the probability that

any set of of example tuples of size |E| exhibits the semantic con-
texts X . This probability is not easy to compute analytically, as it
involves computing a marginal over a potentially infinite set of can-
didate queries. In this work, we model the semantic context prior as
proportional to the selectivity ψ(Φ) of Φ = {φ1, φ2, . . . }, where
φi ∈ Φ is a filter that encodes context xi ∈ X :

Pr∗(X) ∝ ψ(Φ) (2)

Selectivity ψ(φ). The selectivity of a filter φ denotes the portion
of tuples from the result of the base query Q∗ that satisfy φ:

ψ(φ) =
|Q{φ}(D)|
|Q∗(D)|

Similarly, for a set of filters Φ, ψ(Φ) = |QΦ(D)|
|Q∗(D)| . Intuitively,

a selectivity value close to 1 means that the filter is not very se-
lective and most tuples satisfy the filter; selectivity value close to

0 denotes that the filter is highly selective and rejects most of the
tuples. For example, in Figure 6, φ〈gender,Male,⊥〉 is more selective
than φ〈age,[50,90],⊥〉, with selectivities 1

2
and 5

6
, respectively.

Selectivity captures the rarity of a semantic context: uncommon
contexts are present in fewer tuples and thus appear in the output of
fewer queries. Intuitively, a rare context has lower prior probability
of being observed, which supports the assumption of Equation 2.

4.2.2 Query Prior
The query prior Pr∗(Qϕ) denotes the probability that Qϕ is the

intended query, prior to observing the example tuples. We model
the query prior as the joint probability of all filter events φ̃, where
φ ∈ Φ. By further assuming filter independence11, we reduce the
query prior to a product of probabilities of filter events:

Pr∗(Q
ϕ) = Pr∗(

⋂
φ∈Φ φ̃) =

∏
φ∈Φ Pr∗(φ̃) (3)

The filter event prior Pr∗(φ̃) denotes the prior probability that
filter φ is included in (if φ̃ = φ) or excluded from (if φ̃ = φ̄) the
intended query. We compute Pr∗(φ̃) for each filter as follows:

Pr∗(φ) = ρ · δ(φ) · α(φ) · λ(φ) and Pr∗(φ̄) = 1− Pr∗(φ)

Here, ρ is a base prior parameter, common across all filters, and
represents the default value for the prior. The other factors (δ, α,
and λ) reduce the prior, depending on characteristics of each filter.
We describe these parameters next.
Domain selectivity impact δ(φ). Intuitively, a filter that covers a
large range of values in an attribute’s domain is unlikely to be part
of the intended query. For example, if a user is interested in actors
of a certain age group, that age group is more likely to be narrow
(φ〈age,[41,45],⊥〉) than broad (φ〈age,[41,90],⊥〉). We penalize broad fil-
ters with the parameter δ ∈ (0, 1]; δ(φ) is equal to 1 for filters that
do not exceed a predefined ratio in the coverage of their domain,
and decreases for filters that exceed this threshold.12

Association strength impact α(φ). Intuitively, a derived filter
with low association strength is unlikely to appear in the intended
query, as the filter denotes a weak association with the relevant enti-
ties. For example, φ〈genre,Comedy,1〉 is less likely than φ〈genre,Comedy,30〉
to represent a query intent. We label filters with θ lower than a
threshold τα as insignificant, and set α(φ) = 0. All other filters,
including basic filters, have α(φ) = 1.
Outlier impact λ(φ). While α(φ) characterizes the impact of
association strength on a filter individually, λ(φ) characterizes its
impact in consideration with other derived filters over the same at-
tribute. Figure 8 demonstrates two cases of derived filters on the
same attribute (genre), corresponding to two different sets of ex-
ample tuples. In Case A, φ1 and φ2 are more significant than the
other filters of the same family (higher association strength). In-
tuitively, this corresponds to the intent to retrieve actors who ap-
peared in mostly Comedy and SciFi movies. In contrast, Case B
does not have filters that stand out, as all have similar association
strengths: The actors in this example set are not strongly associated
with particular genres, and thus, intuitively, this family of filters is
not relevant to the query intent.

We model the outlier impact λ(φ) of a filter using the skewness
of the association strength distribution within the family of derived
filters sharing the same attribute. Our assumption is that highly-
skewed, heavy-tailed distributions (Case A) are likely to contain
the significant (intended) filters as outliers. We set λ(φ) = 1 for a

11Reasoning about database queries commonly assumes independence across selection
predicates, which filters represent, even though it may not hold in general.

12Details on the computation of δ(φ) and λ(φ) are in our technical report [21].

Case A
φ1 φ〈genre, Comedy, 30〉
φ2 φ〈genre, SciFi, 25〉
φ3 φ〈genre, Drama, 3〉
φ4 φ〈genre, Action, 2〉
φ5 φ〈genre, Thriller, 1〉

Case B
φ1 φ〈genre, Comedy, 12〉
φ2 φ〈genre, SciFi, 10〉
φ3 φ〈genre, Drama, 10〉
φ4 φ〈genre, Action, 9〉
φ5 φ〈genre, Thriller, 9〉

Figure 8: Examples of outlier impact. In Case A, filters φ1 and φ2

are interesting, whereas no filter is interesting in Case B.

derived filter whose association strength is an outlier in the associ-
ation strength distribution of filters of the same family. We also set
λ(φ) = 1 for basic filters. All other filters get λ(φ) = 0.12

4.2.3 Semantic Context Posterior
The semantic context posterior Pr∗(X|Qϕ) is the probability

that a set of example tuples of size |E|, sampled from the output of
a particular query Qϕ, exhibits the set of semantic contexts X :

Pr∗(X|Qϕ) = Pr∗(x1, x2, ..., xn|Qϕ)

Two semantic contexts xi, xj ∈ X are conditionally independent
given Qϕ. Therefore:

Pr∗(X|Qϕ) =
∏n
i=1 Pr∗(xi|Q

ϕ) =
∏n
i=1 Pr∗(xi|φ̃1, φ̃2, . . .)

Recall that φi encodes the semantic context xi (Section 4.1). We
assume that xi is conditionally independent of any φ̃j , i 6= j, given
φ̃i (this always holds for φ̃i = φi):

Pr∗(X|Qϕ) =
∏n
i=1 Pr∗(xi|φ̃i) (4)

For each xi, we compute Pr∗(xi|φ̃i) based on the state of the
filter event (φ̃i = φi or φ̃i = φ̄i):
Pr∗(xi|φi): By definition, all tuples in Q{φi}(D) exhibit the
property of xi. Hence, Pr∗(xi|φi) = 1.
Pr∗(xi|φ̄i): This is the probability that a set of |E| tuples drawn
uniformly at random from Q∗(D) (φi is not applied to the base
query) exhibits the context xi. The portion of tuples in Q∗(D)
that exhibit the property of xi is the selectivity ψ(φi). Therefore,
Pr∗(xi|φ̄i) ≈ ψ(φi)

|E|.
Using Equations (1)–(4), we derive the final form of the query

posterior (where K is a normalization constant):

Pr∗(Q
ϕ|E) =

K

ψ(Φ)

∏
φi∈Φ

(
Pr∗(φ̃i)Pr∗(xi|φ̃i)

)
=

K

ψ(Φ)

∏
φi∈ϕ

Pr∗(φi)Pr∗(xi|φi)
∏
φi 6∈ϕ

Pr∗(φ̄i)Pr∗(xi|φ̄i) (5)

4.3 Generalization
So far, our analysis focused on a fixed base query. Given an

SPJ query Qϕ, the underlying base query Q∗ is deterministic, i.e.,
Pr(Q∗|Qϕ) = 1. Hence:

Pr(Qϕ|E) = Pr(Qϕ, Q∗|E) = Pr(Qϕ|Q∗, E)Pr(Q∗|E)

= Pr∗(Q
ϕ|E)Pr(Q∗|E)

We assume Pr(Q∗|E) to be equal for all valid base queries, where
Q∗(D) ⊇ E. Then we use Pr∗(Qϕ|E) to find the query Q that
maximizes the query posterior Pr(Q|E).

5. OFFLINE ABDUCTION PREPARATION
In this section, we discuss system considerations to perform query

intent discovery efficiently. SQUID employs an offline module
that performs several pre-computation steps to make the database
abduction-ready. The abduction-ready database (αDB) augments

the original database with derived relations that store associations
across entities and precomputes semantic property statistics. Deriv-
ing this information is relatively straightforward; the contributions
of this section lie in the design of the αDB, the information it main-
tains, and its role in supporting efficient query intent discovery. We
describe the three major functions of the αDB.

Entity lookup. SQUID’s goal is to discover the most likely query,
based on the user-provided examples. To do that, it first needs to
determine which entities in the database correspond to the exam-
ples. SQUID uses a global inverted column index [49], built over
all text attributes and stored in the αDB, to perform fast lookups,
matching the provided example data to entities in the database.

Semantic property discovery. To reason about intent, SQUID first
needs to determine what makes the examples similar. It looks for
semantic properties within entity relations (e.g., gender appears in
table person), other relations (e.g., genre appears in a separate ta-
ble joining with movie through a PK-FK constraint), and other enti-
ties, (e.g., the number of movies of a particular genre that a person
has appeared in). The αDB precomputes and stores such derived
relations (e.g., persontogenre), as these may involve several joins
and aggregations and performing them at runtime would be pro-
hibitive.13 For example, SQUID computes the persontogenre rela-
tion (Figure 5) and stores it in the αDB with the SQL query below:

Q6: CREATE TABLE persontogenre as
(SELECT person id, genre id, count(*) AS count
FROM castinfo, movietogenre
WHERE castinfo.movie id = movietogenre.movie id
GROUP BY person id, genre id)

For the αDB construction, SQUID only relies on very basic
information to understand the data organization. It uses (1) the
database schema, including the specification of primary and for-
eign key constraints, and (2) additional meta-data, which can be
provided once by a database administrator, that specify which ta-
bles describe entities (e.g., person, movie), and which tables and
attributes describe direct properties of entities (e.g., genre, age).
SQUID then automatically discovers fact tables, which associate
entities and properties, by exploiting the key-foreign key relation-
ships. SQUID also automatically discovers derived properties up
to a certain pre-defined depth, using paths in the schema graph, that
connect entities to properties. Since the number of possible values
for semantic properties is typically very small and remains con-
stant as entities grow, the αDB grows linearly with the data size. In
our implementation, we restrict the derived property discovery to
the depth of two fact-tables (e.g., SQUID derives persontogenre
through castinfo and movietogenre). SQUID can support deeper
associations, but we found these are not common in practice. SQUID
generally assumes that different entity types appear in different re-
lations, which is the case in many commonly-used schema types,
such as star, galaxy, and fact-constellation schemas. SQUID can
perform inference in a denormalized setting, but would not be able
to produce and reason about derived properties in those cases.

Smart selectivity computation. For basic filters over categorical
values, SQUID stores the selectivity for each value. For numeric
ranges, SQUID precomputes selectivities ψ(φ〈A,[minVA

,v],⊥〉) for
all v ∈ VA, where VA is the set of values of attribute A in the
corresponding relation, and minVA is the minimum value in VA.
The αDB can then derive the selectivity of a filter with any value
range as:

ψ(φ〈A,(l,h],⊥〉) = ψ(φ〈A,[minVA
,h],⊥〉)− ψ(φ〈A,[minVA

,l],⊥〉)

13The data cube [25] can serve as an alternative mechanism to model theαDB data, but
is much less efficient compared to the αDB (details are in our technical report [21]).

In case of derived semantic properties, SQUID precomputes selec-
tivities ψ(φ〈A,v,θ〉) for all v ∈ VA, θ ∈ ΘA,v , where ΘA,v is the
set of values of association strength for the property “A = v”.

6. QUERY INTENT DISCOVERY
During normal operation, SQUID receives example tuples from

a user, consults the αDB, and infers the most likely query intent
(Definition 2.1). In this section, we describe how SQUID resolves
ambiguity in the provided examples, how it derives their semantic
context, and how it finally abduces the intended query.

6.1 Entity and Context Discovery
SQUID’s probabilistic abduction model (Section 4) relies on the

set of semantic contexts X and determines which of these contexts
are intended vs coincidental, by the inclusion or exclusion of the
corresponding filters in the inferred query. To derive the set of se-
mantic contexts from the examples, SQUID first needs to identify
the entities in the αDB that correspond to the provided examples.

6.1.1 Entity disambiguation
User-provided examples are not complete tuples, but often single-

column values that correspond to an entity. As a result, there may
be ambiguity that SQUID needs to resolve. For example, sup-
pose the user provides the examples: {Titanic, Pulp Fiction,
The Matrix}. SQUID consults the precomputed inverted column
index to identify the attributes (movie.title) that contain all the
example values, and classifies the corresponding entity (movie) as
a potential match. However, while the dataset contains unique en-
tries for Pulp Fiction (1994) and The Matrix (1999), there are
4 possible mappings for Titanic: (1) a 1915 Italian film, (2) a 1943
German film, (3) a 1953 film by Jean Negulesco, and (4) the 1997
blockbuster film by James Cameron.

The key insight for resolving such ambiguities is that the pro-
vided examples are more likely to be alike. SQUID selects the
entity mappings that maximize the semantic similarities across the
examples. Therefore, based on the year and country information,
it determines that Titanic corresponds to the 1997 film, as it is
most similar to the other two (unambiguous) entities. In case of
derived properties, e.g., nationality of actors appearing in a film,
SQUID aims to increase the association strength (e.g., the number
of such actors). Since the examples are typically few, SQUID can
determine the right mappings by considering all combinations.

6.1.2 Semantic context discovery
Once SQUID identifies the right entities, it then explores all the

semantic properties stored in the αDB that match these entities
(e.g., year, genre, etc.). Since the αDB precomputes and stores
the derived properties, SQUID can produce all the relevant proper-
ties using queries with at most one join. For each property, SQUID
produces semantic contexts as follows:
Basic property on categorical attribute. If all examples inE con-
tain value v for the property of attribute A, SQUID produces the
semantic context (〈A, v,⊥〉, |E|). For example, a user provides
three movies: Dunkirk, Logan, and Taken. The attribute genre
corresponds to a basic property for movies, and all these movies
share the values, Action and Thriller, for this property. SQUID
generates two semantic contexts: (〈genre, Action,⊥〉, 3) and
(〈genre, Thriller,⊥〉, 3).
Basic property on numerical attribute. If vmin and vmax
are the minimum and maximum values, respectively, that the
examples in E demonstrate for the property of attribute A,
SQUID creates a semantic context on the range [vmin, vmax]:
(〈A, [vmin, vmax],⊥〉, |E|). For example, if E contains three

Algorithm 1: QueryAbduction (E,Q∗,Φ)
Input: set of entitiesE, base queryQ∗, set of minimal valid filters Φ
Output: Qϕ such that Pr∗(Qϕ|E) is maximized

1 X = {x1, x2, ...} // semantic contexts in E

2 ϕ = ∅
3 foreach φi ∈ Φ do
4 includeφi

= Pr∗(φi)Pr∗(xi|φi) // from Equation (5)
5 excludeφi

= Pr∗(φ̄i)Pr∗(xi|φ̄i) // from Equation (5)
6 if includeφi

> excludeφi
then

7 ϕ = ϕ ∪ {φi}

8 return Qϕ

persons with ages 45, 50, and 52, SQUID will produce the context
(〈age, [45, 52],⊥〉, 3).
Derived property. If all examples in E contain value v for the de-
rived property of attribute A, SQUID produces the semantic con-
text (〈A, v, θmin〉, |E|), where θmin is the minimum association
strength for the value v among all examples. For example, if E
contains two persons who have appeared in 3 and 5 Comedy movies,
SQUID will produce the context (〈genre, Comedy, 3〉, 2).

6.2 Query Abduction
SQUID starts abduction by constructing a base query that cap-

tures the structure of the example tuples. Once it identifies the en-
tity and attribute that matches the examples (e.g., person.name), it
forms the minimal PJ query (e.g., SELECT name FROM person). It
then iterates through the discovered semantic contexts and appends
the corresponding relations to the FROM clause and the appropriate
key-foreign key join conditions in the WHERE clause. Since the αDB
precomputes and stores the derived relations, each semantic context
will add at most one relation to the query.

The number of candidate base queries is typically very small. For
each base query Q∗, SQUID abduces the best set of filters ϕ ⊆ Φ
to construct SPJ query Qϕ, by augmenting the WHERE clause of Q∗

with the corresponding selection predicates. (SQUID also removes
from Qϕ any joins that are not relevant to the selected filters ϕ).

While the number of candidate SPJ queries grows exponentially
in the number of minimum valid filters (2|Φ|), we prove that we can
make decisions on including or excluding each filter independently.
Algorithm 1 iterates over the set of minimal valid filters Φ and de-
cides to include a filter only if its addition to the query increases
the query posterior probability (lines 6-7). Our query abduction al-
gorithm has O(|Φ|) time complexity and is guaranteed to produce
the query Qϕ that maximizes the query posterior.

Theorem 1. Given a base query Q∗, a set of examples E, and a
set of minimal valid filters Φ, Algorithm 1 returns the query Qϕ,
where ϕ ⊆ Φ, such that Pr∗(Qϕ|E) is maximized.14

7. EXPERIMENTS
In this section, we present an extensive experimental evalua-

tion of SQUID over three real-world datasets, with a total of 41
benchmark queries of varying complexities. Our results show that
SQUID is scalable and effective, even with a small number of
example tuples. Our evaluation includes qualitative case studies
over real-world user-generated examples, which demonstrate that
SQUID succeeds in inferring the query intent of real-world users.
We further demonstrate that when used as a query-reverse-engineering
system in a closed-world setting SQUID outperforms the state-of-
the-art. Finally, we show that SQUID is superior to semi-supervised
PU-learning in terms of both efficiency and effectiveness.

14Proof is provided in our technical report [21].

10 20 30
Examples

5

15

25

T
im

e
(s

)

10 20 30
Examples

0

2

4

6

T
im

e
(s

)

(a)

5 10 15 20 25 30
Examples

0

5

10

15

20

25

30

35

T
im

e
(s

)

sm-IMDb IMDb bs-IMDb bd-IMDb

(b)
Figure 9: Average abduction time over the benchmark queries in
(a) IMDb (top), DBLP (bottom), and (b) 4 versions of the IMDb
dataset in different sizes.

7.1 Experimental Setup
We implemented SQUID in Java and all experiments were run

on a 12x2.66 GHz machine with 16GB RAM running CentOS 6.9
with PostgreSQL 9.6.6.

Datasets and benchmark queries. Our evaluation includes
three real-world datasets and a total of 41 benchmark queries, de-
signed to cover a broad range of intents and query structures. We
summarize the datasets and queries below and provide detailed de-
scription in our technical report [21].
IMDb (633 MB): The dataset contains 15 relations with informa-
tion on movies, cast members, film studios, etc. We designed a set
of 16 benchmark queries ranging the number of joins (1 to 8 rela-
tions), the number of selection predicates (0 to 7), and the result
cardinality (12 to 2512 tuples).
DBLP (22 MB): We used a subset of the DBLP data [2], with 14
relations, and 16 years (2000–2015) of top 81 conference publica-
tions. We designed 5 queries ranging the number of joins (3 to 8
relations), the number of selection predicates (2 to 4), and the result
cardinality (15 to 468 tuples).
Adult (4 MB): This is a single relation dataset containing census
data of people and their income brackets. We generated 20 queries,
randomizing the attributes and predicate values, ranging the num-
ber of selection predicates (2 to 7) and the result cardinality (8 to
1404 tuples).

Case study data. We retrieved several public lists (sources listed
in our technical report [21]) with human-generated examples, and
identified the corresponding intent. For example, a user-created list
of “115 funniest actors” reveals a query intent (funny actors), and
provides us with real user examples (the names in the list). We used
this method to design 3 case studies: funny actors (IMDb), 2000s
Sci-Fi movies (IMDb), and prolific database researchers (DBLP).

Metrics. We report query discovery time as a metric of efficiency.
We measure effectiveness using precision, recall, and f-score. If
Q is the intended query, and Q′ is the query inferred by SQUID,
precision is computed as Q′(D)∩Q(D)

Q′(D)
and recall as Q′(D)∩Q(D)

Q(D)
;

f-score is their harmonic mean. We also report the total number
of predicates in the produced queries and compare them with the
actual intended queries.

Comparisons. To the best of our knowledge, existing QBE tech-
niques do not produce SPJ queries without (1) a large number of
examples, or (2) additional information, such as provenance. For
this reason, we can’t meaningfully compare SQUID with those ap-
proaches. Removing the open-world requirement, SQUID is most
similar to the QRE system TALOS [53] with respect to expressive-
ness and capabilities (Figure 3). We compare the two systems for
query reverse engineering tasks in Section 7.5. We also compare
SQUID against PU-learning methods [19] in Section 7.6.

10 20
0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

IQ1

Precision Recall F-score

10 20

IQ2

10 20

IQ3

10 20

IQ4

5 10

IQ5

10 20

IQ6

10 20

IQ7

10 20

IQ8

10 20
Examples

0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

IQ9

10 20
Examples

IQ10

10 20
Examples

IQ11

10 20
Examples

IQ12

10 20
Examples

IQ13

10 20
Examples

IQ14

10 20
Examples

IQ15

10 20
Examples

IQ16

(a) IMDb

10 20
0.0

0.5

1.0

DQ1

10 20 30

DQ2

10 20 30

DQ3

5 10
Examples

0.0

0.5

1.0

DQ4

10 20 30
Examples

DQ5

(b) DBLP
Figure 10: SQUID achieves high accuracy with few examples (typically ∼ 5) in most benchmark queries.

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 IQ11 IQ12 IQ13 IQ14 IQ15 IQ16
Benchmark Queries

10−3

10−1

101

T
im

e
(s

)

Actual SQuID

(a) IMDb

DQ1 DQ2 DQ3 DQ4 DQ5
Benchmark Queries

10−3

10−2

10−1

100

T
im

e
(s

)

Actual SQuID

(b) DBLP
Figure 11: SQUID rarely produces queries that are slower than the original with respect to query runtime.

7.2 Scalability
In our first set of experiments, we examine the scalability of

SQUID against increasing number of examples and varied dataset
sizes. Figure 9(a) displays the abduction time for the IMDb and
DBLP datasets as the number of provided examples increases, av-
eraged over all benchmark queries in each dataset. Since SQUID
retrieves semantic properties and computes context for each exam-
ple, the runtime increases linearly with the number of examples,
which is what we observe in practice.

Figure 9(b) extends this experiment to datasets of varied sizes.
We generate three alternative versions of the IMDb dataset: (1) sm-
IMDb (75 MB), a downsized version that keeps 10% of the origi-
nal data; (2) bs-IMDb (1330 MB), doubles the entities of the orig-
inal dataset and creates associations among the duplicate entities
(person and movie) by replicating their original associations; (3) bd-
IMDb (1926 MB), is the same as bs-IMDb but also introduces as-
sociations between the original entities and the duplicates, creating
denser connections.15 SQUID’s runtime increases for all datasets
with the number of examples, and, predictably, larger datasets face
longer abduction times. Query abduction involves point queries to
retrieve semantic properties of the entities, using B-tree indexes.
As the data size increases, the runtime of these queries grows loga-
rithmically. SQUID is slower on bd-IMDb than on bs-IMDb: both
datasets include the same entities, but bd-IMDb has denser associ-
ations, which results in additional derived semantic properties.

7.3 Abduction Accuracy
Intuitively, with a larger number of examples, abduction accu-

racy should increase: SQUID has access to more samples of the
query output, and can more easily distinguish coincidental from in-
tended similarities. Figure 10 confirms this intuition, and precision,
recall, and f-score increase, often very quickly, with the number of
examples for most of our benchmark queries. We discuss here a
few particular queries.

15Details of the data generation process are in our technical report [21].

5 15
#Examples

0.00

0.25

0.50

0.75

1.00

F
-s

co
re

IQ2

w/ DA w/o DA

5 15 25
#Examples

IQ3

5 15 25
#Examples

IQ4

5 15 25
#Examples

IQ11

5 15
#Examples

IQ14

Figure 12: Effect of disambiguation on IMDb

IQ4 & IQ11: These queries include a statistically common prop-
erty (USA movies), and SQUID needs more examples to confirm
that the property is indeed intended, not coincidental; hence, the
precision converges more slowly.
IQ6: In many movies where Clint Eastwood was a director, he was
also an actor. SQUID needs to observe sufficient examples to dis-
cover that the property role:Actor is not intended, so recall con-
verges more slowly.
IQ10: SQUID performs poorly for this query. The query looks
for actors appearing in more than 10 Russian movies that were re-
leased after 2010. While SQUID discovers the derived properties
“more than 10 Russian movies” and “more than 10 movies released
after 2010”, it cannot compound the two into “more than 10 Rus-
sian movies released after 2010”. This query is simply outside of
SQUID’s search space, and SQUID produces a query with more
general predicates than was intended, which is why precision drops.
IQ3: The query is looking for actresses who are Canadian and
were born after 1970. SQUID successfully discovers the prop-
erties gender:Female, country:Canada, and birth year ≥ 1970;
however, it fails to capture the property of “being an actress”, cor-
responding to having appeared in at least 1 film. The reason is that
SQUID is programmed to ignore weak associations (a person asso-
ciated with only 1 movie). This behavior can be fixed by adjusting
the association strength parameter to allow for weaker associations.

10 20 30
Examples

(a)

0.0

0.5

1.0

A
cc

u
ra

cy
M

et
ri

c

Precision Recall F-score

10 20 30
Examples

(b)

0.0

0.5

1.0

10 20 30
Examples

(c)

0.0

0.5

1.0

Figure 13: Precision, recall, and f-score for (a) Funny actors (b)
2000s Sci-Fi movies (c) Prolific DB researchers

101

102

#
P

re
d

ic
at

es

Actual SQuID TALOS

8 11 12 14 14 44 48 12
6

12
8

18
2

20
3

22
3

24
1

34
3

56
3

77
7

79
8

91
2

13
40

14
04

Input Cardinality

0

2

4

6

T
im

e
(s

)

Figure 14: Both systems achieve perfect f-score on Adult (not
shown). SQUID produces significantly smaller queries, often by
orders of magnitude, and is often much faster.

Execution time. While the accuracy results demonstrate that
the abduced queries are semantically close to the intended queries,
SQUID could be deriving a query that is semantically close, but
more complex and costly to compute. In Figures 11(a) and 11(b)
we graph the average runtime of the abduced queries and the actual
benchmark queries. In most cases, the abduced queries and the cor-
responding benchmarks are similar in execution time. Frequently,
the abduced queries are faster because they take advantage of the
precomputed relations in the αDB. In few cases (IQ1, IQ5, and IQ7)
SQUID discovered additional properties that, while not specified
by the original query, are inherent in all intended entities. For ex-
ample, in IQ5, all movies with Tom Cruise and Nicole Kidman are
also English language movies and released between 1990 and 2014.

Effect of entity disambiguation. Finally, we found that entity
disambiguation never hurts abduction accuracy, and may signifi-
cantly improve it. Figure 12 displays the impact of disambiguation
for five IMDb benchmark queries, where disambiguation signifi-
cantly improves the f-score.

7.4 Qualitative Case Studies
In this section, we present qualitative results on the performance

of SQUID, through a simulated user study. We designed 3 case
studies, by constructing queries and examples from human-generated,
publicly-available lists.
Funny actors (IMDb). We created a list of names of 211 “funny ac-
tors”, collected from human-created public lists and Google Knowl-
edge Graph (sources are in our technical report [21]), and used
these names as examples of the query intent “funny actors.” Fig-
ure 13(a) demonstrates the accuracy of the abduced query over a
varying number of examples. Each data point is an average across
10 different random samples of example sets of the corresponding
size. For this experiment, we tuned SQUID to normalize the as-
sociation strength, which means that the relevant predicate would

consider the fraction of movies in an actor’s portfolio classified as
comedies, rather than the absolute number.
2000s Sci-Fi movies (IMDb). We used a user-created list of 165
Sci-Fi movies released in 2000s as examples of the query intent
“2000s Sci-Fi movies”. Figure 13(b) displays the accuracy of the
abduced query, averaged across 10 runs for each example set size.
Prolific database researchers (DBLP). We collected a list of data-
base researchers who served as chairs, group leaders, or program
committee members in SIGMOD 2011–2015 and selected the top
30 most prolific. Figure 13(c) displays the accuracy of the abduced
query averaged, across 10 runs for each example set size.

Analysis. In our case studies there is no (reasonable) SQL query
that models the intent well and produces an output that exactly
matches our lists. Public lists have biases, such as not including
less well-known entities even if these match the intent.16 In our pro-
lific researchers use case, some well-known and prolific researchers
may happen to not serve in service roles frequently, or their com-
mitments may be in venues we did not sample. Therefore, it is not
possible to achieve high precision, as the data is bound to contain
and retrieve entities that don’t appear on the lists, even if the query
is a good match for the intent. For this reason, our precision num-
bers in the case studies are low. However our recall rises quickly
with enough examples, which indicates that the abduced queries
converge to the correct intent.

7.5 Query Reverse Engineering
We present an experimental comparison of SQUID with TA-

LOS [53], a state-of-the-art Query Reverse Engineering (QRE) sys-
tem.17 QRE systems operate in a closed-world setting, assuming
that the provided examples comprise the entire query output. In
contrast, SQUID assumes an open-world setting, and only needs a
few examples. In the closed-world setting, SQUID is handicapped
against a dedicated QRE system, as it does not take advantage of
the closed-world constraint in its inference.

For this evaluation under the QRE setting, we use the IMDb and
DBLP datasets, as well as the Adult dataset, on which TALOS was
shown to perform well [53]. For each dataset, we provided the
entire output of the benchmark queries as input to SQUID and TA-
LOS. Since there is no need to drop coincidental filters for query
reverse engineering, we set the parameters so that SQUID behaves
optimistically (e.g., high filter prior, low association strength thresh-
old, etc.).18 We adopt the notion of instance equivalent query (IEQ)
from the QRE literature [53] to express that two queries produce the
same set of results on a particular database instance. A QRE task is
successful if the system discovers an IEQ of the original query (f-
score=1). For the IMDb dataset, SQUID was able to successfully
reverse engineer 11 out of 16 benchmark queries. Additionally, in
4 cases where exact IEQs were not abduced, SQUID queries gen-
erated output with ≥ 0.98 f-score. SQUID failed only for IQ10,
which is a query that falls outside the supported query family, as
discussed in Section 7.3. For the DBLP and Adult datasets, SQUID
successfully reverse-engineered all benchmark queries.

Comparison with TALOS. We compare SQUID to TALOS
on three metrics: number of predicates (including join and selection
predicates), query discovery time, and f-score.
Adult. Both SQUID and TALOS achieved perfect f-score on the 20
benchmark queries. Figure 14 compares the systems in terms of the

16 To counter this bias, our case study experiments use popularity masks (derived from
public lists) to filter the examples and the abduced query outputs [21].

17Other related methods either focus on more restricted query classes [31, 61] or do not
scale to data sizes large enough for this evaluation [62, 54] (overview in Figure 3).

18Details on the system parameters are in our technical report [21].

100

101

102

#
P

re
d

ic
at

es
Actual SQuID TALOS

100

101

102

103

T
im

e
(s

)

IQ1
(113)

IQ2
(20)

IQ3
(1531)

IQ4
(1374)

IQ5
(12)

IQ6
(36)

IQ7
(35)

IQ8
(71)

IQ9
(23)

IQ10
(84)

IQ11
(291)

IQ12
(394)

IQ13
(57)

IQ14
(22)

IQ15
(2512)

IQ16
(207)

Benchmark Query with Cardinality

0.5

1.0

F
-s

co
re

(a) IMDb

101

102

100

101

102

DQ1
(30)

DQ2
(52)

DQ3
(468)

DQ4
(15)

DQ5
(336)

Benchmark Query with Cardinality

0.5

1.0

(b) DBLP

Figure 15: SQUID produces queries with significantly fewer predicates than TALOS and is more accurate on both IMDb and DBLP. SQUID
is almost always faster on IMDb, but TALOS is faster on DBLP.

number of predicates in the queries they produce (top) and query
discovery time (bottom). SQUID almost always produces simpler
queries, close in the number of predicates to the original query,
while TALOS queries contain more than 100 predicates in 20% of
the cases. SQUID is faster than TALOS when the input cardinality
is low (∼100 tuples), and becomes slower for the largest input sizes
(> 700 tuples). SQUID was not designed as a QRE system, and in
practice, users rarely provide large example sets. SQUID’s focus is
on inferring simple queries that model the intent, rather than cover
all examples with potentially complex and lengthy queries.
IMDb. Figure 15(a) compares the two systems on the 16 bench-
mark queries of the IMDb dataset. SQUID produced better queries
in almost all cases: in all cases, our abduced queries where signif-
icantly smaller, and our f-score is higher for most queries. SQUID
was also faster than TALOS for most of the benchmark queries. We
now delve deeper into some particular cases.

For IQ1 (cast of Pulp Fiction), TALOS produces a query with
f-score = 0.7. We attempted to provide guidance to TALOS through
a system parameter that specifies which attributes to include in the
selection predicates (which would give it an unfair advantage). TA-
LOS first performs a full join among the participating relations
(person and castinfo) and then performs classification on the de-
normalized table (with attributes person, movie, role). TALOS
gives all rows referring to a cast member of Pulp Fiction a posi-
tive label (based on the examples), regardless of the movie that row
refers to, and then builds a decision tree based on these incorrect
labels. This is a limitation of TALOS, which SQUID overcomes
by looking at the semantic similarities of the examples, rather than
treating them simply as labels.

SQUID took more time than TALOS in IQ4, IQ7, and IQ15. The
result sets of IQ4 and IQ15 are large (> 1000), so this is expected.
IQ7 retrieves all movie genres without a selection predicate. As
a decision tree approach, TALOS has the advantage here, as it
stops at the root and does not need to traverse the tree. In contrast,
SQUID retrieves all semantic properties of the example tuples only
to discover that either there is nothing common among them, or the
property is not significant. While SQUID takes longer, it still ab-
duces the correct query. These cases are not representative of QBE
scenarios, as users are unlikely to provide large number of example
tuples or have very general intents (PJ queries without selection).
DBLP. Figure 15(b) compares the two systems on the DBLP dataset.
Here, SQUID successfully reverse engineered all five benchmark

0.1 0.4 0.7 1.0

0.2
0.4
0.6
0.8
1.0

Precision

SQuID PU (DT) PU (RF)

0.1 0.4 0.7 1.0
Fraction of positive data used as example

(a)

Recall

0.1 0.4 0.7 1.0

F-score

1 4 7 10
Scale factor

(b)

0

10

T
im

e
(s

)

Scalability

Figure 16: (a) PU-learning needs a large fraction (> 70%) of
the query results (positive data) as examples to achieve accuracy
comparable to SQUID. (b) The total required time for training and
prediction in PU-learning increases linearly with the data size. In
contrast, abduction time for SQUID increases logarithmically.

queries, but TALOS failed to reverse engineer two of them. TA-
LOS also produced very complex queries, with 100 or more pred-
icates for four of the cases. In contrast, SQUID’s abductions were
orders of magnitude smaller, on par with the original query. On this
dataset, SQUID was slower than TALOS, but not by a lot.

7.6 Comparison with learning methods
Query intent discovery can be viewed as a one-class classifica-

tion problem, where the task is to identify the tuples that satisfy the
desired intent. Positive and Unlabeled (PU) learning addresses this
problem setting by learning a classifier from positive examples and
unlabeled data in a semi-supervised setting. We compare SQUID
against an established PU-learning method [19] on 20 benchmark
queries of the Adult dataset. The setting of this experiment con-
forms with the technique’s requirements [19]: the dataset com-
prises of a single relation and the examples are chosen uniformly at
random from the positive data.

Figure 16(a) compares the accuracy of SQUID and PU-learning
using two different estimators, decision tree (DT) and random for-
est (RF). We observe that PU-learning needs a large fraction (>
70%) of the query result to achieve f-score comparable to SQUID.
PU-learning favors precision over recall, and the latter drops signif-
icantly when the number of examples is low. In contrast, SQUID
achieves robust performance, even with few examples, because it
can encode problem-specific assumptions (e.g., that there exists an
underlying SQL query that models the intent, that some filters are
more likely than other filters, etc.); this cannot be done in straight-
forward ways for machine learning methods.

To evaluate scalability, we replicated the Adult dataset, with a
scale factor up to 10x. Figure 16(b) shows that PU-learning be-
comes significantly slower than SQUID as the data size increases,
whereas SQUID’s runtime performance remains largely unchanged.
This is because SQUID does not directly operate on the data out-
side of the examples (unlabeled data); rather, it relies on the αDB,
which contains a highly compressed summary of the semantic prop-
erty statistics (e.g., filter selectivities) of the data. In contrast, PU-
learning builds a new classifier over all of the data for each query
intent discovery task. Section 8 provides further discussion on the
connections between SQUID and machine learning approaches.

8. RELATED WORK
Query-by-Example (QBE) was an early effort to assist users

without SQL expertise in formulating SQL queries [64]. Existing
QBE systems [49, 46] identify relevant relations and joins in situa-
tions where the user lacks schema understanding, but are limited to
project-join queries. These systems focus on the common structure
of the example tuples, and do not try to learn the common semantics
as SQUID does. QPlain [14] uses user-provided provenance of the
example tuples to learn the join paths and improve intent inference.
However, this assumes that the user understands the schema, con-
tent, and domain to provide these provenance explanations, which
is often unrealistic for non-experts.

Set expansion is a problem corresponding to QBE in Knowl-
edge Graphs [63, 55, 57]. SPARQLByE [15], built on top of a
SPARQL QRE system [4], allows querying RDF datasets by anno-
tated (positive/negative) example tuples. In semantic knowledge
graphs, systems address the entity set expansion problem using
maximal-aspect-based entity model, semantic-feature-based graph
query, and entity co-occurrence information [36, 28, 26, 41]. These
approaches exploit the semantic context of the example tuples, but
they cannot learn new semantic properties, such as aggregates in-
volving numeric values, that are not explicitly stored in the knowl-
edge graph, and they cannot express derived semantic properties
without exploding the graph size. For example, to represent “ap-
pearing in more than K comedies”, the knowledge graph would
require one property for each possible value of K.

Interactive approaches rely on relevance feedback on system-
generated tuples to improve query inference and result delivery [1,
11, 16, 23, 35]. Such systems typically expect a large number of
interactions, and are often not suitable for non-experts who may not
be sufficiently familiar with the data to provide effective feedback.

Query Reverse Engineering (QRE) [56, 6] is a special case of
QBE that assumes that the provided examples comprise the com-
plete output of the intended query. Because of this closed-world
assumption, QRE systems can build data classification models on
denormalized tables [53], labeling the provided tuples as positive
examples and the rest as negative. Such methods are not suitable
for our setting, because we operate with few examples, under an
open-world assumption. While few QRE approaches [31] relax
the closed world assumption (known as the superset QRE prob-
lem) they are also limited to PJ queries similar to the existing QBE
approaches. Most QRE methods are limited to narrow classes of
queries, such as PJ [61, 31], aggregation without joins [51], or top-k
queries [45]. REGAL+[52] handles SPJA queries but only consid-
ers the schema of the example tuples to derive the joins and ignores
other semantics. In contrast, SQUID considers joining relations
without attributes in the example schema (Example 1.1).

A few QRE methods target expressive SPJ queries [62, 54], but
they only work for very small databases (< 100 cells), and do not
scale to the datasets used in our evaluation. Moreover, the user
needs to specify the data in their entirety, thus expecting complete

schema knowledge, while SCYTHE [54] also expects user hints
towards precise discovery of the constants of the query predicates.

Machine learning methods can model QBE settings as classifi-
cation problems, and relational machine learning targets relational
settings in particular [24]. However, while the examples serve as
positive labels, QBE settings do not provide explicit negative exam-
ples. Semi-supervised statistical relational learning techniques [58]
can learn from unlabeled and labeled data, but require unbiased
sample of negative examples. There is no obvious way to obtain
such a sample in our problem setting without significant user effort.

Our problem setting is better handled by one-class classifica-
tion [38, 32], more specifically, Positive and Unlabeled (PU) learn-
ing [59, 37, 9, 19, 8, 42], which learns from positive examples
and unlabeled data in a semi-supervised setting [13]. Most PU-
learning methods assume denormalized data, but relational PU-
leaning methods do exist. However, all PU-learning methods rely
on one or more strong assumptions [9] (e.g., all unlabeled entities
are negative [44], examples are selected completely at random [19,
7], positive and negative entities are naturally separable [59, 37,
50], similar entities are likely from the same class [33]). These
assumptions create a poor fit for our problem setting where the ex-
ample set is very small, it may exhibit user biases, response should
be real-time, and intents may involve deep semantic similarity.

Other approaches that assist users in query formulation involve
query recommendation based on collaborative filtering [18], query
autocompletion [34], and query suggestion [20, 17, 29]. Another
approach to facilitating data exploration is keyword-based search [3,
27, 60]. User-provided examples and interactions appear in other
problem settings, such as learning schema mappings [48, 47, 12].
The query likelihood model in IR [39] resembles our technique, but
does not exploit the similarity of the input entities.

9. SUMMARY AND FUTURE DIRECTIONS
In this paper, we focused on the problem of query intent discov-

ery from a set of example tuples. We presented SQUID, a sys-
tem that performs query intent discovery effectively and efficiently,
even with few examples in most cases. The insights of our work
rely on exploiting the rich information present in the data to dis-
cover similarities among the provided examples, and distinguish
between those that are coincidental and those that are intended. Our
contributions include a probabilistic abduction model and the de-
sign of an abduction-ready database, which allow SQUID to cap-
ture both explicit and implicit semantic contexts. Our work in-
cludes an extensive experimental evaluation of the effectiveness
and efficiency of our framework over three real-world datasets, case
studies based on real user-generated examples and abstract intents,
and comparison with the state-of-the-art in query reverse engineer-
ing (a special case of query intent discovery) and with PU-learning.
Our empirical results highlight the flexibility of our method, as it
is extremely effective in a broad range of scenarios. Notably, even
though SQUID targets query intent discovery with a small set of a
examples, it outperforms the state-of-the-art in query reverse engi-
neering in most cases, and is superior to learning techniques.

There are several possible improvements and research directions
that can stem from our work, including smarter semantic context in-
ference using log data, example recommendation to increase sam-
ple diversity and improve abduction, techniques for adjusting the
depth of association discovery, on-the-fly αDB construction, and
efficient αDB maintenance for dynamic datasets.

Acknowledgements: This material is based upon work supported
by the NSF under grants CCF-1763423 and IIS-1453543. We thank
Quoc Trung Tran for sharing the source code of TALOS.

10. REFERENCES
[1] A. Abouzied, D. Angluin, C. Papadimitriou, J. M.

Hellerstein, and A. Silberschatz. Learning and verifying
quantified boolean queries by example. In PODS, pages
49–60, 2013.

[2] S. Agarwal, A. Sureka, N. Mittal, R. Katyal, and D. Correa.
DBLP records and entries for key computer science
conferences, 2016.

[3] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: a system
for keyword-based search over relational databases. In ICDE,
pages 5–16, 2002.

[4] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse
engineering SPARQL queries. In WWW, pages 239–249,
2016.

[5] O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe.
Coherent integration of databases by abductive logic
programming. J. Artif. Intell. Res., 21:245–286, 2004.

[6] P. Barceló and M. Romero. The Complexity of Reverse
Engineering Problems for Conjunctive Queries. In ICDT,
volume 68, pages 7:1–7:17, 2017.

[7] J. Bekker and J. Davis. Positive and unlabeled relational
classification through label frequency estimation. In ILP,
pages 16–30, 2017.

[8] J. Bekker and J. Davis. Estimating the class prior in positive
and unlabeled data through decision tree induction. In AAAI,
pages 2712–2719, 2018.

[9] J. Bekker and J. Davis. Learning from positive and unlabeled
data: A survey. CoRR, abs/1811.04820, 2018.

[10] L. E. Bertossi and B. Salimi. Causes for query answers from
databases: Datalog abduction, view-updates, and integrity
constraints. Int. J. Approx. Reasoning, 90:226–252, 2017.

[11] A. Bonifati, R. Ciucanu, and S. Staworko. Learning join
queries from user examples. TODS, 40(4):24:1–24:38, 2016.

[12] A. Bonifati, U. Comignani, E. Coquery, and R. Thion.
Interactive mapping specification with exemplar tuples. In
SIGMOD, pages 667–682, 2017.

[13] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised
Learning. The MIT Press, 1st edition, 2010.

[14] D. Deutch and A. Gilad. Qplain: Query by explanation. In
ICDE, pages 1358–1361, 2016.

[15] G. I. Diaz, M. Arenas, and M. Benedikt. SPARQLByE:
Querying RDF data by example. PVLDB, 9(13):1533–1536,
2016.

[16] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Aide: An
active learning-based approach for interactive data
exploration. TKDE, 28(11):2842–2856, 2016.

[17] M. Drosou and E. Pitoura. Ymaldb: Exploring relational
databases via result-driven recommendations. VLDBJ,
22(6):849–874, 2013.

[18] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh.
Querie: Collaborative database exploration. TKDE,
26(7):1778–1790, 2014.

[19] C. Elkan and K. Noto. Learning classifiers from only positive
and unlabeled data. In SIGKDD, pages 213–220. ACM,
2008.

[20] J. Fan, G. Li, and L. Zhou. Interactive sql query suggestion:
Making databases user-friendly. In ICDE, pages 351–362,
2011.

[21] A. Fariha and A. Meliou. Example-driven query intent
discovery: Abductive reasoning using semantic similarity.
CoRR, abs/1906.10322, 2019.

[22] A. Fariha, S. M. Sarwar, and A. Meliou. SQuID: Semantic
similarity-aware query intent discovery. In SIGMOD, pages
1745–1748, 2018.

[23] X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, and P. K. Chrysanthis.
Request: A scalable framework for interactive construction
of exploratory queries. In Big Data, pages 646–655, 2016.

[24] L. Getoor and B. Taskar. Introduction to statistical relational
learning, 2007.

[25] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data mining and knowledge
discovery, 1(1):29–53, 1997.

[26] J. Han, K. Zheng, A. Sun, S. Shang, and J. R. Wen.
Discovering neighborhood pattern queries by sample
answers in knowledge base. In ICDE, pages 1014–1025,
2016.

[27] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[28] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri.
Querying knowledge graphs by example entity tuples.
TKDE, 27(10):2797–2811, 2015.

[29] L. Jiang and A. Nandi. SnapToQuery: Providing interactive
feedback during exploratory query specification. PVLDB,
8(11):1250–1261, 2015.

[30] A. C. Kakas. Abduction. In Encyclopedia of Machine
Learning and Data Mining, pages 1–8. Springer, 2017.

[31] D. V. Kalashnikov, L. V. S. Lakshmanan, and D. Srivastava.
FastQRE: Fast query reverse engineering. In SIGMOD,
pages 337–350, 2018.

[32] S. S. Khan and M. G. Madden. A survey of recent trends in
one class classification. In AICS, pages 188–197. Springer,
2009.

[33] T. Khot, S. Natarajan, and J. W. Shavlik. Relational one-class
classification: A non-parametric approach. In AAAI, pages
2453–2459, 2014.

[34] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-aware autocompletion for SQL.
PVLDB, 4(1):22–33, 2010.

[35] H. Li, C. Chan, and D. Maier. Query from examples: An
iterative, data-driven approach to query construction.
PVLDB, 8(13):2158–2169, 2015.

[36] L. Lim, H. Wang, and M. Wang. Semantic queries by
example. In EDBT, pages 347–358, 2013.

[37] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text
classifiers using positive and unlabeled examples. In ICDM,
pages 179–188, 2003.

[38] L. M. Manevitz and M. Yousef. One-class svms for
document classification. JMLR, 2(Dec):139–154, 2001.

[39] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge University Press, 2008.

[40] T. Menzies. Applications of abduction: knowledge-level
modelling. Int. J. Hum.-Comput. Stud., 45(3):305–335, 1996.

[41] S. Metzger, R. Schenkel, and M. Sydow. QBEES:
query-by-example entity search in semantic knowledge
graphs based on maximal aspects, diversity-awareness and
relaxation. J. Intell. Inf. Syst., 49(3):333–366, 2017.

[42] F. Mordelet and J.-P. Vert. A bagging svm to learn from
positive and unlabeled examples. Pattern Recognition
Letters, 37:201–209, 2014.

[43] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.
Exemplar queries: A new way of searching. VLDBJ,
25(6):741–765, 2016.

[44] A. Neelakantan, B. Roth, and A. McCallum. Compositional
vector space models for knowledge base completion. In ACL,
pages 156–166, 2015.

[45] K. Panev, N. Weisenauer, and S. Michel. Reverse
engineering top-k join queries. In BTW, pages 61–80, 2017.

[46] F. Psallidas, B. Ding, K. Chakrabarti, and S. Chaudhuri. S4:
Top-k spreadsheet-style search for query discovery. In
SIGMOD, pages 2001–2016, 2015.

[47] L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven
schema mapping. In SIGMOD, pages 73–84, 2012.

[48] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom. Synthesizing view definitions from data. In ICDT,
pages 89–103, 2010.

[49] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and
L. Novik. Discovering queries based on example tuples. In
SIGMOD, pages 493–504, 2014.

[50] A. Srinivasan. The aleph manual.
[51] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava.

Reverse engineering aggregation queries. PVLDB,
10(11):1394–1405, 2017.

[52] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava.
REGAL+: reverse engineering SPJA queries. PVLDB,
11(12):1982–1985, 2018.

[53] Q. T. Tran, C. Chan, and S. Parthasarathy. Query reverse
engineering. VLDBJ, 23(5):721–746, 2014.

[54] C. Wang, A. Cheung, and R. Bodik. Synthesizing highly
expressive sql queries from input-output examples. In PLDI,
pages 452–466, 2017.

[55] R. C. Wang and W. W. Cohen. Language-independent set
expansion of named entities using the web. In ICDM, pages
342–350, 2007.

[56] Y. Y. Weiss and S. Cohen. Reverse engineering spj-queries
from examples. In PODS, pages 151–166, 2017.

[57] Word grabbag. http://wordgrabbag.com, 2018.
[58] R. Xiang and J. Neville. Pseudolikelihood EM for

within-network relational learning. In ICDM, pages
1103–1108, 2008.

[59] H. Yu, J. Han, and K. C. Chang. PEBL: positive example
based learning for web page classification using SVM. In
SIGKDD, pages 239–248, 2002.

[60] Z. Zeng, M. Lee, and T. W. Ling. Answering keyword
queries involving aggregates and GROUPBY on relational
databases. In EDBT, pages 161–172, 2016.

[61] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join queries. In
SIGMOD, pages 809–820, 2013.

[62] S. Zhang and Y. Sun. Automatically synthesizing sql queries
from input-output examples. In ASE, pages 224–234, 2013.

[63] X. Zhang, Y. Chen, J. Chen, X. Du, K. Wang, and J. Wen.
Entity set expansion via knowledge graphs. In SIGIR, pages
1101–1104, 2017.

[64] M. M. Zloof. Query-by-example: The invocation and
definition of tables and forms. In PVLDB, pages 1–24, 1975.

http://wordgrabbag.com

